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Abstract
Risk-averse multi-stage problems and their applications are gaining interest in
various fields of applications. Under convexity assumptions, the resolution of
these problems can be done with trajectory following dynamic programming
algorithms like Stochastic Dual Dynamic Programming (SDDP) to access a
deterministic lower bound, and dual SDDP for deterministic upper bounds.
In this paper, we leverage the dual SDDP algorithm to compute a policy with
guaranteed risk-adjusted performance for multistage stochastic linear problems.
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1 Introduction
Multi-stage stochastic optimization problems have a wide range of applications,
from energy management to portfolio optimization. When the noise can be assumed
stagewise-independent, or at least Markovian, these problems can be tackled by
dynamic programming. However, when the state and control dimension increase, stan-
dard approaches like stochastic dynamic programming fall short due to the curses of
dimensionality. To overcome this limitation, Stochastic Dual Dynamic Programming
(SDDP) has been pioneered in the 90’s to tackle hydro-thermal generation problems
in Brazil (see Pereira and Pinto (1991)). It assumes convex costs and linear dynamics,
and iteratively refines outer approximations of the Bellman functions (a.k.a cost-to-
go function), by adding linear cuts. This approach yields a converging lower bound of
the multi-stage problem.

The aforementioned problems mostly concern risk-neutral minimization. In recent
years, risk-averse optimization has gained interest for use cases where extreme scenar-
ios need to be specifically accounted for. Convex risk measures like the average value
at risk (AV@R, see Rockafellar and Uryasev (2000))1 have been used in the context
of optimization, including multistage stochastic optimization. The SDDP algorithm
can easily be extended to risk-averse settings (Philpott and De Matos, 2012; Shapiro
et al., 2013; Philpott et al., 2013; Guigues, 2016), as finding cuts, and thus lower

1Also known as Conditional Value at Risk, Tail Value at Risk, Expected Shortfall or superquantile.
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bounds for composed risk measures (see Ruszczyński (2010) for definition) is as easy
as for risk-neutral problem.

However, computing upper bounds is more challenging. In deterministic optimiza-
tion, an upper bound is often obtained by evaluating an admissible solution. In the
risk-neutral setting, this upper bound can be estimated via Monte Carlo sampling of
noise scenarios, but, in the risk-averse case, the composed risk-measures make this
procedure not numerically tractable.

To tackle this issue, we introduced a dual version of SDDP in Leclère et al. (2020).
The idea is to run SDDP on a dual formulation of the problem, getting lower approx-
imations of the Fenchel transform of the Bellman value functions. Taking again the
Fenchel transform provides an upper approximation of the Bellman value function.
Thus, the algorithm computes at each iteration a deterministic upper bound of the
problem. The idea was extended to the risk-averse setting in da Costa and Leclère
(2023) and in a slightly different form in Guigues et al. (2023).

In this paper, we show that this upper bound on the optimal (risk-adjusted) value
of the primal problem is also an upper bound on a computable policy. More precisely,
using the outer approximation in the dual, we derive an inner approximation in the
primal, and show that the cost of the policy induced by these inner approximations
is no greater than the current upper bound. We thus extend the inner-approximation
result of Leclère et al. (2020) to the risk-averse setting.

There are numerous tools to model risk-aversion. As common in the stochastic pro-
gramming litterature, we focused on coherent risk measures Artzner et al. (1999), and
more specifically on composed risk measures Ruszczyński (2010) to enable dynamic
programming tools. In da Costa and Leclère (2023), we showed the duality results
for composed risk measures with polyhedral step-measures. Finally, for the sake of
simplicity, we consider a linear setting, but the results can be extended to convex
problems, with adequate qualifications conditions.

Contributions
The main contributions of this paper are the following: i) we provide a new deriva-
tion of the dual SDDP algorithm for risk-averse linear problem based on duality of
Bellman operator, ii) we show how to use the dual value functions to derive an inner
approximation of the primal value functions, and iii) we show that the cost of the pol-
icy induced by these inner approximations is no greater than the current upper bound.
Additionaly, we present a new numerical application, and study some numerical ideas
to accelerate the convergence of the dual SDDP algorithm.

Outline
The remainder of the paper is organized as follows. In Section 2, we introduce the
mathematical setting and assumptions. In Section 3, we recall and develop the duality
results of da Costa and Leclère (2023) that are required to run a risk-averse dual SDDP
algorithm, which we briefly present. These will all be combined in Section 4, where
we show that the dual value functions can be used to derive an inner approximation
of the primal value functions, and induce a policy with guaranteed risk-adjusted per-
formance. Finally, Section 5 presents numerical results on two examples. To preserve
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the flow of the arguments, most proofs are deferred to appendix B, complemented by
results on convex analysis in appendix A.

Notations
For a vector x̄ ∈ Rn, we extend the interval notation [0, x̄] to indicate the the box
{ 0 ≤ xi ≤ x̄i }. For an integer n, we use [n] to denote the set {1, . . . , n}. This is used
in particular in the case x[t], which denotes the vector (x1, . . . , xt) with the t first
coordinates. Inequality between vectors is understood component-wise.

Random variables are denoted by boldface letters, and their realizations by the
corresponding ligthface font. Equality and inequalities between random variables are
understood almost surely (a.s.). xt ⪯ ξ[t] means that xt is measurable with respect
to the σ-algebra generated by ξ[t]. In a mathematical program, we sometimes specify
between brackets the notation of the dual multiplier associated with a constraint.

2 Mathematical setting
We consider, for all t ∈ [T ] a finitely supported random variable ξt, taking values in Ξt.
Further ξ0 is deterministic. These noises will be assumed to be stagewise independent
throughout the paper.

2.1 Risk measures
A coherent risk measure, as defined by Artzner et al. (1999), is a function mapping
the set of random variables to the extended real line, that is monotonous, convex,
translation equivariant, and positively homogeneous. If, in addition, it is lower semi-
continuous, then there exists a closed convex set Q of probability measures on (Ξt,Ft)
such that

ρ(X) = sup
Q∈Q

EQ[X]. (1)

We say that a coherent risk measure ρ is polyhedral if the risk set Q is a polyhedron.
Example 1. The Average Value at Risk (AV@R), defined in Rockafellar and Uryasev
(2000) as

AV@Rα(X) = inf
z∈R

{
z + 1

α
E
[
(X − z)+]} , (2)

is a coherent risk measure. Note that if Ξt is finite, then AV@Rα(X) is polyhedral.
To mitigate the risk aversion of AV@R, we often consider a convex combination

of AV@R and expectation, i.e., ρ = βE + (1 − β)AV@Rα with α, β ∈ (0, 1], which is
also a coherent risk measure that is polyhedral if Ξt is finite.

2.2 Risk-averse multi-stage problem
We consider the risk-averse multi-stage problem

inf
x1,y1

ρ1

(
c⊤

1 y1 + inf
x2,y2

ρ2

(
...+ inf

xT ,yT

ρT
(
c⊤
T yT + g(xT )

)))
(3a)

s.t. Atxt + Btxt−1 + T tyt = dt, ∀t ∈ [T ], (3b)
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0 ≤ xt ≤ x̄t ∀t ∈ [T ], (3c)
0 ≤ yt ≤ ȳt ∀t ∈ [T ], (3d)
xt,yt ⪯ ξ[t] ∀t ∈ [T ], (3e)

where, x0 is a given deterministic vector, for all t ∈ [T ], (At,Bt,T t,dt, ct) are random
variables measurable with respect to ξt, and ρt is a polyhedral risk measure on Ξt as
introduced in section 2.1.

In the following, we consider a terminal cost function g of the form g(x) =
K⊤ (x̃0 − x)+

, where K ∈ Rn+, and (.)+ acts component-wise on vectors.
Constraint (3e) is the non-anticipativity condition, stating that the decision at

time t can only depend on the past realizations of the noises.
To solve this multistage problem, we define the primal Bellman operator associated

with (3) as

Bt(V )(xt) = inf
xt+1,yt+1

ρt

(
c⊤
t+1yt+1 + V (xt+1)

)
s.t. At+1xt+1 + Bt+1xt + T t+1yt+1 = dt+1

0 ≤ xt+1 ≤ x̄t+1
0 ≤ yt+1 ≤ ȳt+1

(4)

Finally, for t ∈ [T ], we define the Bellman function Vt recursively as{
VT+1 = g

Vt = Bt(Vt+1) for t ∈ J0, T − 1K.
(5)

In particular, V0(x0) is the value of the problem (3).

2.3 Technical assumptions
In this paper we discuss version of the SDDP algorithm for the problem (3). This
algorithm requires some assumptions on the problem, namely stagewise independence
(for Dynamic Programming), relatively complete recourse and compactness of the
state space.

In order to state those technical assumptions, we introduce the notion of reachable
set of the problem (3), that is the set of states that can be reached, at least for one
scenario, from the initial state x0:

X0 = {x0} (6a)
Xt,j(xt−1) =

{
0 ≤ xt ≤ x̄t | ∃yt, 0 ≤ yt ≤ ȳt, (6b)

Ajtxt +Bjtxt−1 + T jt yt = djt
}

∀t ∈ [T ], ∀j ∈ [J ]

Xt =
⋃
j∈[J]

⋃
xt−1∈Xt−1

Xt,j(xt−1) ∀t ∈ [T ], (6c)
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where, for j ∈ [J ], Ajt , B
j
t , T

j
t , d

j
t describe the possible realizations of the noise.

We make the following assumptions on the problem (3):

1. Stagewise independence: The noises ξt are stagewise independent;
2. Compactness: the reachable state set Xt is compact for all t ∈ [T ];
3. Relatively complete recourse (RCR): for all xt−1 ∈ Xt−1, and all j ∈ [J ],

Xt(xt−1) is non-empty.

With these assumptions, we get two important results. First, that the SDDP algo-
rithm converges to the optimal value of the problem (3), i.e., V0(x0) (see e.g., Forcier
and Leclere (2023)). Further, that the value functions are Lipschitz continuous, see
proposition 3.1.

3 Duality theory for risk-averse multistage problems
Standard results and definitions of convex analysis are regrouped in appendix A. We
start this section with more specific results that will be useful in the sequel, and then
proceed to build the dual SDDP algorithm.

3.1 Convex analysis results
Using relatively complete recourse, polyhedrality of the Bellman operators and the
Hoffman lemma, it can be shown (see, for instance (Shapiro et al., 2009, Proposition
2.7)) that we can propagate Lipschitz constants through the dynamic programming
recursion:
Proposition 3.1. If V is Lt+1-Lipschitz for the L1 norm on Xt+1, and Bt is a Linear
Bellman Operator with relatively complete recourse, then there exists Lt, depending
only on Bt and Lt+1 such that Bt(V ) is Lt-Lipschitz on Xt.

In particular, since g is Lipschitz, all the Vt defined in (5) are Lipschitz on Xt.
We will need to extend the value functions Vt to the whole space Rn. The Lipschitz

regularization of a function f (also known as the Pasch-Hausdorff envelope of f) is
defined, for L > 0, as the inf-convolution2 of f with the function g(x) = L ∥x∥1. The
following proposition (see (Rockafellar and Wets, 2009, Example 9.11) for a proof)
justifies the interpretation as a Lipschitz regularization:
Proposition 3.2. If f is a proper function on Rn and L > 0, then f □ (L ∥·∥1) is the
largest L-Lipschitz function on Rn that is at most equal to f (or is identically −∞ if
such a function does not exist). In particular, if f is L-Lipschitz on its domain, then
it coincides with its regularization on its domain.

Note that if L is too small then f □ (L ∥·∥1) can be identically −∞. This does not
happen if f is bounded from below.

The coperspective of a convex function f , introduced by da Costa and Leclère
(2023) and denoted f⊠ := (̃f∗), is the perspective of its Fenchel transform. For γ > 0,
it is given by

f⊠ : Rn × R+ → R : (π, γ) 7→ sup
x
π⊤x− γf(x). (7)

2The inf-convolution and f and g is defined as f □ g : x 7→ infy f(x) + g(x − y).
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Note that it is jointly convex in (π, γ), lower semicontinuous, and positively homoge-
neous of degree 1. Moreover, the coperspective of a polyhedral function is polyhedral.
Finally, for a proper, lsc, convex function f , we have f = (f⊠(·, 1))∗.

The Lipschitz regularization is well-behaved for Fenchel duality, and also for the
coperpective with an extra regularity assumption, as shown in the following lemma.
Its proof can be found in appendix B.
Lemma 3.3. If f is a proper convex lsc function and L ≥ 0, then

(f □ L ∥·∥1)∗ = f∗ + (L ∥·∥1)∗ = f∗ + ILB∞ , (8)

where B∞ = {π ∈ Rn | ∥π∥∞ ≤ 1}. So, for x ∈ Rn,

f □ (L ∥·∥1)(x) = sup
∥π∥∞≤L

π⊤x− f∗(π). (9)

If f is also bounded below, then, for (π, γ) ∈ Rn × R+,[
f □ (L ∥·∥1)

]⊠
(π, γ) = f⊠(π, γ) + I{∥π∥∞≤γL}. (10)

We will use a variation of the Lipschitz regularization for coperspectives; in our
setting, it will not be symmetric, but one-sided. We define it more generally for func-
tions F : Rn × R+ → R, but the reader should think of the case where F = f⊠. For
x ∈ Rn+, we define the x-rectification of F by

RxF : Rn × R+ → R : (π, γ) 7→ min
ψ
F (ψ, γ) + x⊤(π−ψ)+. (11)

Therefore, the rectification is a partial inf-convolution with a multiple of the positive
part function, evaluated coordinate-wise. 3 For future use, we will denote the function
π 7→ x⊤(π)+ by x⊤ReLU, by analogy with a layer of ReLU functions.

Rectification preserves convexity and ensures boundedness of the gradients with
respect to π. Thus, it is analogous to the Lipschitz regularization, leaving unchanged
functions whose π-gradients are bounded. We state this fact more formally in the
following lemma, whose proof can be found in appendix B:
Lemma 3.4. For x ∈ Rn+ and F : Rn × R+ → R proper, jointly convex and with
domain Rn × R+, we have:

1. RxF is jointly convex in π and γ, proper, and has domain Rn × R+;
2. ∂π(RxF )(π, γ) ⊂ [0, x] for all (π, γ) ∈ Rn × R+;
3. If, for all (π, γ) ∈ Rn × R+, ∂πF (π, γ) ⊂ [0, x], then RxF = F on Rn × R+.

3.2 Dual Bellman operators
As shown in Leclère et al. (2020); da Costa and Leclère (2023), the recursion
Vt = Bt(Vt+1) leads to a dual recursion between the coperspectives: V ⊠

t = B⊠
t (V ⊠

t+1),

3The fact that |x| = max{(x)+, (−x)+} justifies “one-sided”.
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since B⊠
t (V ⊠) =

[
Bt(V )

]⊠ for proper, convex, lsc functions V . However, B⊠
t does

not necessarily satisfy relatively complete recourse, and the outgoing state variables
are not explicitly bounded which are common assumptions for the convergence of
the SDDP algorithm. To remedy that, we consider instead the recursion between the
modified value functions Wt, which are defined by

Wt := (Lt ∥·∥1) □ (I[0,x̄t] + Vt). (12)

Since the optimization problem for Bt only evaluates states in [0, x̄t+1], and the value
function Vt+1 is Lt+1-Lipschitz on [0, x̄t+1], the regularization Wt+1 coincides with
Vt+1 there, so Bt(Wt+1) = Bt(Vt+1) = Vt. The recursion for Wt is therefore

Wt = (Lt ∥·∥1) □ (I[0,x̄t] + Bt(Wt+1)).

Taking conjugates on (12), which interchanges sums and infimal convolutions (see
(37) and (38)), and using that Bt(Wt+1) is defined over Xt ⊂ [0, x̄t] (by relatively
complete recourse), we get

W ∗
t = ILtB∞ + (x̄⊤

t ReLU □ V ∗
t ). (13)

Therefore
W⊠
t (π, γ) = I∥π∥∞≤γLt

+ (Rx̄tV
⊠
t )(π, γ). (14)

This is immediate for γ > 0, using the definition of the perspective and the recti-
fication (11). For γ = 0, notice that W ∗

t has bounded and non-empty domain, so
its recession function is I0. The same holds for ILtB∞ , and the recession function of
x̄⊤
t ReLU □ V ∗

t is defined at zero (since the function is not identically +∞).

Now, let Dt := Rx̄tV
⊠
t , and substitute the dual recursion V ⊠

t = B⊠
t (V ⊠

t+1) =
B⊠
t (W⊠

t+1) to get
Dt = Rx̄tB⊠

t (I∥π∥∞≤γLt+1 +Dt+1) , (15)
which yields a modified dual recursion, which we write as Dt = Dt(Dt+1). The rectifi-
cation on the outside ensures relatively complete recourse, and the indicator function
ensures boundedness of the outgoing state variables, which can be seen in the explicit
form of the Bellman operator Dt:

Dt(πt, γt) = inf
γj ,ζ,ξj≥0
πj ,λj

ζ⊤
t x̄t +

∑
j∈[Jt] λ

⊤
j d

j
t+1 + ξ⊤

j ȳt+1 +Dt+1(πj , γj)

s.t. ζt +
∑
j∈[J] B

j⊤
t+1λj ≥ πt

(γj)j ∈ γtΓt

Aj⊤t+1λj + πj ≥ 0 ∀j ∈ [J ]
ξj + T j⊤t+1λj + γjc

j
t+1 ≥ 0 ∀j ∈ [J ]

|πj | ≤ γjLt+1 ∀j ∈ [J ]

(16)
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This holds up to t = 1. For the value of the first stage problem, we don’t have
the outer rectification, but on the other hand we have a fixed initial primal state x̃0.
Since we wish to bound V0(x̃0) = supπ0 π

⊤
0 x̃0 − V ⊠

0 (π0, 1), we replace the first-stage
dual problem by

−
{

inf
π0

B⊠
0 (I∥π∥∞≤γL1 +D1)(π0, 1) − π⊤

0 x̃0

}
, (17)

which is feasible since π0 is not fixed.
The introduction of the functions Wt and Dt, and their relation to the original

value functions Vt, will also be useful in section 4, where we show that Dt can be
used to construct an inner policy with guaranteed risk-adjusted performance for the
original problem.

3.3 Dual SDDP
The dual SDDP algorithm is obtained by applying SDDP to the dual Bellman oper-
ators Dt Leclère et al. (2020); da Costa and Leclère (2023). It is guaranteed to
converge, since the operators Dt, defined in (16), satisfy relatively complete recourse
and compactness of the reachable set (as the outgoing state variables are bounded).

The recursion starts from DT+1 = Rx̄T +1g
⊠, which is polyhedral because g is, and

can be represented explicitly in the last-stage optimization problem in the epigraphical
form:

DT+1(π, γ) = inf
ψ,θ

x̄⊤
T+1(π − ψ)+ + θ s.t. θ ≥ g⊠(ψ, γ). (18)

Next, we must construct the initial lower bounds for the dual value functions
Dt. This is done by performing an initial backward pass calculating cuts for Dt at
(π = 0, γ = 1), which are valid trial points as shown in lemma B.3. Another possibility
is to require the user to provide a valid upper bound for each Vt, t = 1, . . . , T .

At each iteration, we make a forward pass to construct trial points (πt, γt), and
then a backward pass to construct cuts for Dt at these points, improving the approx-
imations Dk

t . Since the dual problems given by (16) include all noise realizations,
the forward pass also provides Lagrange multipliers to build a cut for Dt. This is
summarized in algorithm 1.

At each iteration of the algorithm we have Dk
t ≤ Dt, and in particular Dk

1 ≤ D1.
Therefore, the optimal value of problem (17) is a deterministic upper bound for V0(x̃0).

Implementation details
• The dual value functions Dt are homogeneous of degree 1. Therefore, any cut
C(π, γ) = fγ + xTπ + h can be assumed to have an offset h = 0. This ensures that
the outer approximations are also 1-homogeneous.

• Contrary to primal SDDP, where cuts are typically good approximations of the
value function locally, a cut approximating Dt at some point (π, γ) means we have
a good approximation of Dt anywhere of the half line joining this point to the
origin. As a result, during the forward pass, starting from time t, if children j is

9



Algorithm 1 Dual SDDP
Require: K the number of iterations to perform.

1: Build dual problems for t = T, . . . , 0.
2: Initialize DT+1(π, γ) in the last stage problem.
3: for t = T, . . . , 1 do
4: Compute a first cut for Dt by solving (16) at (π = 0, γ = 1).
5: end for
6: for k = 1, . . . ,K do
7: Solve the first-stage problem (17).
8: Update the current bound for V0(x̃0) from the optimal value.
9: Select a scenario j and the corresponding outgoing state (π1, γ1) for the next

stage.
10: for t = 1, . . . , T − 1 do ▷ Forward pass
11: Solve (16) at (πt, γt) sampled from the forward pass.
12: Add a cut for Dt from the optimal Lagrange multipliers.
13: Select a scenario j and the corresponding outgoing state (πt+1, γt+1) for

the next stage.
14: end for
15: for t = T, . . . , 1 do ▷ Backward pass
16: Add another cut for Dt by solving (16) at (πt, γt) for the updated Dk+1

t+1 .
17: end for
18: end for

chosen leading to (πj , γj), we normalize with respect to the γ component and set
(πt+1, γt+1) = (πj

γj
, 1) for the next time step, when γ ̸= 0.

• Since the dual problems are not separable by noise realization, forward and back-
ward passes have equivalent computational cost, and both can be used to add cuts
to Dt. We propose here to perform backward passes anyway, at least for some iter-
ations. Indeed, when performing forward passes only, the information provided by
a cut at time T will take T iterations to be propagated back to t = 0. Running a
backward pass allows to back-propagate all the cut information at the end of one
iteration, which improves convergence when T is large.

4 Policies with guaranteed risk bounds
In this section, we detail how to leverage the value functions computed in the dual
SDDP algorithm to provide a feasible (primal) policy. We use the approximations
Dk
t of the dual value functions to build an inner approximation of the primal value

functions, which are compatible in a way that the risk-adjusted cost of the correspond-
ing inner strategy is no greater than the upper bound computed in the dual SDDP
algorithm.
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4.1 Primal policies

For a sequence of finite polyhedral functions
{
V̂t

}
0≤t≤T

, we define the state and
control processes {x̂t, ŷt} as

(x̂t+1, ŷt+1) = argmin
xt+1,yt+1

ρ

(
c⊤
t+1yt+1 + V̂t+1(xt+1)

)
s.t. At+1xt+1 + Bt+1xt + T t+1yt+1 = dt+1 a.s

0 ≤ xt+1 ≤ x̄t+1 a.s
0 ≤ yt+1 ≤ ȳt+1 a.s

(19)

The risk of this strategy when starting from state x ∈ supp (x̂t) at time t is denoted

ρ̂t(x) = ρ

(
c⊤
t ŷt + ρ

(
...+ ρ

(
c⊤
T ŷT−1 + g(xT )

))∣∣∣∣x̂t = x

)
(20)

Traditionally, we use V̂t = V t, where V t is an outer approximation of the exact value
function Vt obtained via primal SDDP, to derive a primal strategy. In the risk-neutral
setting, it is possible to use Monte-Carlo methods to estimate the average cost of
this strategy Pereira and Pinto (1991). This can be used to stop the algorithm when
the exact lower bound is close enough to the upper bound of the confidence interval,
see (Shapiro, 2011, remark 4). In the risk-averse setting, however, this is more difficult,
because of the nested risk measures.

We propose here to use an inner approximation derived from the approximations
of the dual functions, for which the policy is guaranteed to have a risk no greater
than the upper bound computed in the dual SDDP algorithm. This has been shown
in Leclère et al. (2020) for risk-neutral problems.

4.2 Inner approximation from Dt

We define here a primal strategy based on an inner approximation of the primal value
functions. Following the discussion on section 3.2, we can use an inner approximation
to Wt instead of one for Vt. Since W⊠

t (π, γ) = I∥π∥∞≤γLt
+ Dt(π, γ), evaluating at

γ = 1 and taking the dual (as in section 3.3) suggests the following
Definition 4.1. Let, for t ∈ [T ],

V
k

t := W k
t = (Lt ∥·∥1) □

[
Dk
t (., 1)

]∗
. (21)

It is an inner approximation of Vt on Xt since Dk
t ≤ Dt and Fenchel conjugacy reverses

the ordering.
The dual SDDP algorithm yields lower approximations of the form

Dk
t (π, γ) = min

z
z

s.t z ≥ f ltγ + xlt
⊤
π for l = 1, . . . , k,

(22)
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where {(f lt , xlt)}1≤l≤k are the cut coefficients calculated for Dk
t .

The following proposition is analogous to (Leclère et al., 2020, Proposition 26) for
the risk-averse setting.
Proposition 4.2. For 0 ≤ t ≤ T ,

1. V kt ≥ Vt on Xt;
2. For x ∈ Rn,

V
k

t (x) = min
y∈Rn,σl≥0

Lt ∥x− y∥1 −
k∑
l=1

σlf
l
t

s.t.
∑k
l=1 σl = 1∑k
l=1 σlx

l
t = y

(23)

Using formula (23) as a representation for V̂ in equation (19) gives a practical way
of implementing a primal strategy from V

k

t . Since V kt ≥ Vt, this justifies the name
inner approximation for V kt .

The lower approximations built by the primal SDDP algorithm satisfy by construc-
tion V kt ≤ Bt(V kt+1), since the cuts for that define V t are lower bounds for the expected
future value function. The same holds for the dual SDDP algorithm: Dk

t ≤ Dt(Dk
t+1).

Since V kt is obtained by duality, we have a result, proved in appendix B.4, with the
reversed ordering:
Proposition 4.3. For all t ∈ J0, T − 1K and all k ≥ 0 we have

Bt
(
V
k

t+1

)
≤ V

k

t on Xt. (24)

From this, we deduce that the dual upper bound is also an upper bound of this
strategy.
Theorem 4.4 (Bounding theorem). Let {x̂kt , ŷ

k
t } be the state and control processes

induced by the inner strategy defined by the sequence
{
V
k

t

}
0≤t≤T

, and let ρ̂kt (x) be
the risk of this strategy starting at time t from state x, as given by equation (20). For
all t ∈ J0, T K and x ∈ [0, x̄t], we have

ρ̂kt (x) ≤ V t(x). (25)

In particular, the risk of the inner strategy is lower than the current upper bound Uk
given by the dual SDDP algorithm.

Proof. We proceed by backward induction on time t. The property holds for t = T .
Assume that ρ̂kt+1(xkt+1) ≤ V

k

t (xkt+1). Let x ∈ [0, x̄t]. For t > 0,

ρ̂kt (x) = ρ

(
c⊤
t+1ykt+1 + ρ̂kt+1(xkt+1)

)
≤ ρ

(
c⊤
t+1ykt+1 + V

k

t+1(xkt+1)
)

(by induction and monotonicity of ρ)
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= Bt(V
k

t+1)(x) (by definition of ykt+1)

≤ V
k

t (x) (by Proposition 4.3)

For t = 0,
[
Dk

0(., 1)
]∗

□ (L0∥.∥1) (x̃0) = FL0
x̃0

(Dk
0) per Lemma 3.3, which is equal

to Uk.

5 Numerical experiments
We detail here the numerical experiments we performed to illustrate the performance
of the dual SDDP algorithm.

5.1 Interconnected micro-grids
The first model we consider is a chain of 4 interconnected micro-grids denoted MGi

for i = 1, ..., 4, optimized over a 24h horizon with T = 96 15-minute time steps. The
main grid will be denoted MG0. Each microgrid MGi has a battery installed, with
state of charge xi ∈ [0, 70]. During time interval [t, t + 1], it can charge an amount
Φi+t+1 or discharge an amount Φi−t+1, with efficiencies ρ+ and ρ−, and incurs a residual
(and random) electrical demand dit+1 ∈ R. The global state of the system is

xt = (x1
t , x

2
t , x

3
t , x

4
t )⊤ (26)

and the vector of battery controls is

Φt+1 =
(
Φ1+
t+1,Φ1−

t+1,Φ2+
t+1,Φ2−

t+1,Φ3+
t+1,Φ3−

t+1,Φ4+
t+1,Φ4−

t+1
)⊤
. (27)

MGi can send a non-negative amount of energy eij to MGj in the following way:
• MG1 can buy energy from MG0 at a unit (deterministic, but time-varying) price
pt. It can also sell to MG0 at a unit price 0.4pt;

• MG2 can exchange energy with MG1 and MG3 with unit exchange cost ce modeling
average losses by Joule effect;

• MG4 can exchange energy with MG3 with unit exchange cost ce.

We note
et+1 =

(
e01
t+1, e

10
t+1, e

12
t+1, e

21
t+1, e

23
t+1, e

32
t+1, e

34
t+1, e

43
t+1
)⊤ (28)

the vector of possible energy exchanges and

Te =


1 −1 −1 1 0 0 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 1 −1

 (29)

the corresponding exchange matrix.
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For convenience, we denote bdiag(a, b) the block diagonal matrix

bdiag(a, b) =


a b 0 0 0 0 0 0
0 0 a b 0 0 0 0
0 0 0 0 a b 0 0
0 0 0 0 0 0 a b

 , (30)

and define TΦ = bdiag(−1, 1), Tρ = bdiag(ρ+,−ρ−). We write

ct+1 = (0, 0, 0, 0, 0, 0, 0, 0, pt,−0.4pt, ce, ce, ce, ce, ce, ce)⊤ (31)

the cost vector on time interval [t, t+ 1] and

dt+1 =
(
0, 0, 0, 0,d1

t+1,d
2
t+1,d

3
t+1,d

4
t+1
)⊤ (32)

the random demand vector with |supp(dt+1)| = 50 realizations. Then the system
dynamics can be put in the form (3) with

A = I8,4, B = −I8,4, T =
(
Tρ 04,8
TΦ Te

)
and yt+1 =

(
Φt+1
et+1

)
(33)

Note that the matrices are deterministic and static.

5.2 Brazilian Hydro-thermal model
The second experiment we consider is a hydro-thermal problem over a one year horizon
with T = 12 monthly stages and 82 noise realizations per time step. It is described in
detail in da Costa and Leclère (2023).

5.3 Numerical results
We used three different strategies for the forward sampling:
• Importance sampling (I): the child j for the next state is chosen at random

from the distribution induced by the weights γj computed during the solution of
the forward pass;

• Base probability (B): the child j for the next state is drawn from the base
probability P;

• Alternating (A): at each iteration, we perform a forward and backward pass of
the primal SDDP algorithm, and use the subgradient π from the cut at stage t as
the state (with γ = 1) used to calculate cuts for the dual SDDP;

We present the evolution of the gap between the upper bounds of the dual SDDP
and the lower bounds of the primal SDDP along the iterations and along the time
in Figures 1a and 1b for the multigrid problem, and in Figures 2a and 2b for the
hydro-thermal problem. These experiments were run on an Intel(R) Xeon(R) Platinum
8370C CPU @ 2.80GHz, using the CPLEX solver for the LPs.
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Fig. 1: Relative gap between dual SDDP upper bounds and primal SDDP lower
bounds on the microgrid problem, for different forward sampling strategies: (I):
Importance sampling; (B): Base probability; (A): Alternating.

50 100 150 200 250 300
Iteration number

10 1

100

Re
la

tiv
e 

ga
p

Hydro, = 0.1, = 0.1

Strategy
I
B
A

(a) Gap along iterations

0 1 2 3
Dual computation time (h)

10 1

100

Re
la

tiv
e 

ga
p

Hydro, = 0.1, = 0.1
Strategy

I
B
A

(b) Gap along time

Fig. 2: Relative gap between dual SDDP upper bounds and primal SDDP lower
bounds on the hydro-thermal problem, for different forward sampling strategies: (I):
Importance sampling; (B): Base probability; (A): Alternating.

For both problems, the importance sampling procedure is the one with smallest
gap, with similar time compared to the base probability sampling. This is especially
noticeable in very risk-averse parameter settings, and also in the multigrid problem.
Also, we observe that the alternating strategy is not competitive with the other two.
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A Convex analysis
We recall here some standard definitions and results from convex analysis, which can
be found in Rockafellar (1970); Rockafellar and Wets (2009); Combettes (2018).

A.1 Fenchel conjugate
Let φ : Rn → R̄ be a function. Recall that its domain is dom(φ) = {x ∈ Rn | φ(x) <
+∞}, and its epigraph is epi(φ) = {(x, α) ∈ Rn × R | φ(x) ≤ α}. φ is convex if
its epigraph is a convex set, lower semicontinuous (lsc) if its epigraph is closed, and
proper if its domain is non-empty (i.e., it takes at least one finite value) and never
takes the value −∞.

For a proper function φ : Rn → R̄, its Fenchel transform is the lsc convex function

φ∗ : Rn → R̄ : π 7→ sup
x∈Rn

π⊤x− φ(x). (34)

Importantly, the Fenchel transform is order-reversing: for proper functions φ and ψ,

φ ≤ ψ =⇒ ψ∗ ≤ φ∗. (35)

Finally, if φ is proper, convex and lower semicontinuous, then φ∗∗ = φ.

A.2 Infimal convolution
Let f and g be two proper functions on Rn. Their infimal convolution is

f □ g : x 7→ inf
y
f(y) + g(x− y). (36)

The infimal convolution is commutative and associative. However, it does not
necessarily preserve properness.

The infimal convolution can be used to regularize a function f . The most common
is the Moreau-Yosida regularization, which is the infimal convolution with 1

µ∥ · ∥2
2 for

some µ > 0. Another example is the L-Lipschitz regularization of f for the L1 norm,
also know as Pasch-Hausdorff envelope of f , which is the infimal convolution with
g = L ∥·∥1. More precisely, let f be a proper convex function and L > 0, then f□L ∥·∥1
is either ≡ −∞ or the largest L-Lipschitz function that minorizes f (Rockafellar and
Wets, 2009, Example 9.11).

Finally, the Fenchel transform of the infimal convolution of proper convex functions
φ1, . . . , φm is the sum of the Fenchel transforms (Rockafellar, 1970, Theorem 16.4):

(φ1 □ · · · □ φm)∗ = φ∗
1 + · · · + φ∗

m. (37)

To obtain the reverse equality, we need an additional assumption over the domain of
φi. More precisely, if (φi)i∈[n] are proper, convex functions, such that, for i ≤ k, φk
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is polyhedral, we have that (see (Rockafellar, 1970, Theorem 20.1))

k⋂
i=1

dom(φi) ∩
n⋂

i=k+1
ri dom(φi) ̸= ∅ =⇒ (φ1 + · · · + φk)∗ = φ∗

1 □ · · · □ φ∗
k. (38)

A.3 Perspective function
For a convex function φ, its perspective is the lsc convex function φ̃ defined by

φ̃ : Rn × R →] − ∞,+∞] : (γ, x) 7→


γφ(x/γ), if γ > 0
(recφ)(x), if γ = 0
+∞, otherwise

(39)

where recφ is the recession function of φ, defined by, for any z ∈ dom(φ),

recφ(x) = lim
γ→+∞

φ(z + γx)
γ

. (40)

B Proofs of technical results
We recall the statements before the proofs, for ease of reference.

B.1 Proof of Lemma 3.3
Lemma B.1. If f is a proper convex lsc function and L ≥ 0, then

(f □ L ∥·∥1)∗ = f∗ + (L ∥·∥1)∗ = f∗ + ILB∞ , (41)

where B∞ = {π ∈ Rn | ∥π∥∞ ≤ 1}. So, for x ∈ Rn,

f □ (L ∥·∥1)(x) = sup
∥π∥∞≤L

π⊤x− f∗(π). (42)

If f is also bounded below, then, for (π, γ) ∈ Rn × R+,

[
f □ (L ∥·∥1)

]⊠
(π, γ) = f⊠(π, γ) + I{∥π∥∞≤γL}. (43)

Proof. The first equation follows by eq. (37). As f □ L ∥·∥1 is proper convex and lsc,
taking the conjugate of eq. (41) yields the second result.

Taking the perspective of both sides of eq. (41) yields eq. (43) for γ > 0. If
γ = 0, both sides yield I0(π). Indeed, for the right hand side, rec f∗ ̸≡ −∞ since f is
proper, convex and lsc, and as dom(f∗) ̸= ∅, we have rec f∗(0) = limγ→+∞

f∗(π0)
γ =

0. For the left hand side of eq. (43), since f is bounded below, we have that f □
L ∥·∥1 is also bounded below, so its conjugate is not identically +∞, and therefore
rec [f □ L ∥·∥1]∗ ̸≡ +∞.

19



B.2 Proof of Lemma 3.4
Lemma B.2. For x ∈ Rn+ and F : Rn × R+ → R proper, jointly convex and with
domain Rn × R+, we have:

1. RxF is jointly convex in π and γ, proper, and has domain Rn × R+;
2. ∂π(RxF )(π, γ) ⊂ [0, x] for all (π, γ) ∈ Rn × R+;
3. If, for all (π, γ) ∈ Rn × R+, ∂πF (π, γ) ⊂ [0, x], then RxF = F on Rn × R+.

Proof. 1. For (π, γ) ∈ Rn × R+, we have

RxF (π, γ) = inf
ζ+ψ≥π
ζ≥0

x⊤ζ + F (ψ, γ) = inf
ψ
F (ψ, γ) + inf

ζ≥π−ψ
ζ≥0

x⊤ζ, (44)

and the second infimum is equal to x⊤(π − ψ)+ since x ≥ 0.
2. By definition, RxF (π, γ) = F (·, γ)□ (x⊤ReLU). Since the conjugate of x⊤ReLU is

I[0,x], and using that F is proper and convex, equation (37) shows that the Fenchel
conjugate of RxF (·, γ) is finite only on (a subset of) [0, x].

3. Assume that all the π-subgradients of F are in [0, x]. Let (π, γ) ∈ Rn × R+. By
convexity of F ,

F (ψ, γ) ≥ F (π, γ) + g⊤(ψ − π) (45)
where g ∈ ∂πF (π, γ). Thus

F (ψ, γ) + x⊤(π − ψ)+ ≥ F (π, γ) + g⊤(π − ψ)− + (x− g)⊤(π − ψ)+ (46)

where (.)− : y 7→ max(0,−y). By assumption on g, both products in (46) are
non-negative. We deduce that

F (ψ, γ) + x⊤(π − ψ)+ ≥ F (π, γ) (47)

for all ψ, with equality when ψ = π.

B.3 Proof of feasibility of trial points
Lemma B.3. The point (π = 0, γ = 1) is feasible for the dual recursion (15).

Proof. Substituting γ = 1 yields

Dt(D0
t+1)(π, 1) =

[
x̄⊤
t ReLU □

(
B⊠
t (I∥π∥≤γLt+1 +D0

t+1))(·, 1)
]

(π) =: ϕt(π),

which defines a proper convex polyhedral function ϕt. It suffices to show that ϕt(0) is
finite. By Fenchel duality:

ϕt(0) = ϕ∗∗
t (0) = sup

x
0⊤x− ϕ∗

t (x)

= − inf
x

(x̄⊤
t ReLU)∗(x) +

[
B⊠
t (I∥π∥≤γLt+1 +D0

t+1)(·, 1)
]∗(x)
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= − inf
x

I[0,x̄t] + Bt(
[
(I∥π∥≤γLt+1 +D0

t+1)(·, 1)
]∗)(x)

= − inf
x

I[0,x̄t] + Bt(Lt+1 ∥·∥1 □ (D0
t+1(·, 1))∗)(x).

The equalities are, respectively: the definition of the convex conjugate; the conjugate
of the infimal convolution; the evaluation of the conjugates, using B⊠

t (V ⊠) = [Bt(V )]⊠;
the conjugate of the sum. For convenience, we define

W k
t = Lt ∥·∥1 □ (Dk

t (·, 1))∗. (48)

In the first iteration, D0
T+1 = Rx̄T +1g

⊠ ̸≡ +∞, and for all other 1 ≤ t ≤ T we have
that D0

t+1 is a linear function. So, in both cases the argument for Bt will be Lt+1-
Lipschitz, and by the RCR hypothesis Bt(W 0

t+1) will be Lt-Lipschitz over Xt ⊂ [0, x̄t].
Therefore, the minimum is finite, which shows that we can construct an Lt-Lipschitz
cut for Dt.

B.4 Proof of proposition 4.3
Proposition B.4. For all t ∈ J0, T − 1K and all k ≥ 0 we have

Bt
(
V
k

t+1

)
≤ V

k

t on Xt. (49)

Proof. By definition, the coperspective of Bt(V
k

t+1) is

[
Bt

(
Lt+1 ∥·∥1 □

[
Dk
t+1(., 1)

]∗
)]⊠

= B⊠
t

(
I∥π∥∞≤γLt+1 +

[[
Dk
t+1(., 1)

]∗]⊠)

= B⊠
t

(
I∥π∥∞≤γLt+1 +

[
Dk
t+1(., 1)

]∗∗:
)

= B⊠
t

(
I∥π∥∞≤γLt+1 +Dk

t+1

)
(50)

by proper polyhedrality and 1-homogeneity of Dk
t+1.

Since Dt performs a regularization, we have that

Dt

(
Dk
t+1

)
= Rx̄tB⊠

t

(
I∥π∥∞≤γLt+1 +Dk

t+1

)
≤ B⊠

t

(
I∥π∥∞≤γLt+1 +Dk

t+1

)
=
(

Bt(V
k

t+1)
)⊠

.

By the construction of cuts for Dt, we get inductively

Dk
t ≤ Dt

(
Dk
t+1

)
≤
[
Bt
(
V
k

t+1

) ]⊠
. (51)
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Evaluating it at (π, 1) for π ∈ Rn, we have[
Bt
(
V
k

t+1

)]∗
(π) ≥ Dk

t (π, 1). (52)

By applying the Fenchel transform to (52), and exploiting the proper polyhedrality
of Bt

(
V
k

t+1

)
, we obtain

Bt
(
V
k

t+1

)
≤
[
Dk
t (., 1)

]∗
. (53)

By Proposition 3.2, V
k

t+1 is Lt+1-Lipschitz on Rn. Hence, by Proposition 3.1,
Bt
(
V
k

t+1

)
is Lt-Lipschitz on Xt. Regularizing both sides and using Lemma 3.4, we

get that Bt
(
V
k

t+1

)
≤
[
Dk
t (., 1)

]∗
□ (Lt∥.∥1) on Xt.
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